氦核增长到大概零点五倍太阳质量后,氦元素将被点燃,咱们的太阳大约在五六十亿年后达到氦元素聚变的条件。”
“但如果到时候,太阳的质量低于目前太阳的一半,那么氦元素无法点燃,也就无法变成红巨星,而是直接就演化为以氦元素为主星体,白矮星。此时太阳不会增大膨胀,也就不会吞没包括地球在内的行星。”
“但你们记住,红巨星最后经过氦燃烧之后,也会逐渐暗淡,收缩,最后变成白矮星。但其元素构成就发生了变化,以碳,氧为主。因为氦的聚变产物,就是碳和氧。”
“不过也可能在氦被点燃的一瞬间,在几秒钟内释放巨大的能量,这就是氦闪,氦闪把太阳外层的残余氢元素和氦元素吹向四周,最终形成行星状星云。但如果是这样,咱们太阳外层的行星系统瞬间就会烧焦甚至被蒸发掉了。然后重新开始凝聚,再次衍化行星。”
“此时由于氦闪,导致氦元素无法被点燃,聚变停止,太阳依靠残存氢元素继续燃烧,直到氦核再次达到聚变条件时,再会进行氦元素的聚变。”
“或者,再次氦闪。经过多次氦闪之后,氦核始终不能被点燃,最终熄灭,变成白矮星,但此时不管如何演变,最终咱们的太阳的归宿,就是白矮星,当白矮星的残存的一点点氢燃烧完毕,太阳将不再发光,也就是说从白矮星完全变成黑矮星。”
“当然,如果是一个比咱们的太阳大一些的太阳,比如说是咱们太阳质量的三倍到十倍大小的太阳,那么恒星内部聚集的氦元素,将足以维持氦的持续聚变,并点燃碳元素和氧元素,最终的产物是氖、镁,硅元素。”
“如果恒星再大一点,比咱们的太阳质量大十倍以,那么氦燃烧过后,会有足够的碳,氧等元素维持聚变燃烧。”
“氧、氖、镁元素会继续燃烧,最终生成铁,恒星从内到外依次为铁核心、硅壳层、氧壳层、氖壳层、碳壳层、氦壳层和富氢大气层,最终这样的恒星会以超新星爆发的形式结束生命。”
“最终重新形成星云。如果运气好,星云再次塌缩形成新的太阳,新的行星系统,开始一个新的循环。”
“总体来说,古太阳,也被称为超巨星,因为它太大了,质量越大的恒星,内部温度和压力越高,核聚变反应速度越快,结果就是恒星质量越大寿命越低。”
“这些古太阳的超大质量,让其寿命可能只有短短1000万年,甚至几百万年,便会以超级新星爆炸的方式结束。”
“而小质量恒星的寿命,比如说咱们的太阳,或者比咱们的太阳再小一些的恒星,有高达数百亿甚至千亿年的寿命。”
“但并不是所有的超大质量的恒星都会爆炸,有一些少量的古太阳,因为体积合适,所以燃烧到了铁核之后,开始塌缩内陷,最后变成了宇宙间可怕的怪兽,黑洞。”
“他们产生了可怕的引力,连光都不能逃脱,一旦被吸住,只能坠入其中被压缩到一个致密的点。”
“当然,大多数古太阳或者直接超新星爆炸了,只有极少数质量合适的变成黑洞。但随着古太阳的爆炸,产生了很多星云,诞生了更多恒星,这其中,有大质量恒星,有中等质量恒星,还有小质量恒星。”
“而大质量恒星重复了古太阳的命运,燃烧剧烈之后,再次爆炸,但这一次,形成衍化成黑洞的几率大大增加了。同时,这里又出现的一个变化,那就是中子星。”
“其实中子星的衍化原理和黑洞类似,但是他或者是超新星爆炸之后留下的致密的恒星铁内核。”
“或者是恒星演化到末期,重力崩溃发生超新星爆炸之后,质量没有达到可以形成黑洞的条件在寿命终结时塌缩形成的一种介于白矮星和黑洞之间的星体。他们致密,且引力很大。”
“你们想象一下,咱们的太阳被压缩到和咱们的房间一样大小,是个什么状态?这个时候,物质的电子被强行挤压进质子中,从而形成不带电荷的中子,所有中子都紧密的被压在一起,没有丝毫的缝隙。”
“如果你能到中子星拿下一小块这样致密的石头,当这小块石头脱离中子星的重力场之后会急速的膨胀发生爆炸。爆炸的规模足以和咱们地球最大的火山爆发匹敌。那是一个什么样的场景?”
“当然,恒星的还有一种终结形式,那就是巨暴,一些恒星死亡之后,没有塌缩,因为没有足够的内核引力,所以他们迅速膨胀,体积可以持续增大十万倍,成为超级巨大但能量很低的恒星残骸。在宇宙间漂浮。”
“不过这里准确说,当宇宙诞生,第一批恒星诞生到开始运行。灼热而巨大的年轻恒星迅速演化。”
“迅速的燃烧其氢元素作为能量,又很快就在辉煌的超新星爆炸中结束了它们的生命,将热核尘埃诸如氦、碳、氧和种种较重的元素。还源源不断生成一代代新恒星的星云。”
“大量早期恒星的超新星爆炸,使紧邻的星云气体中产生了连续冲击波,挤压着星系间的媒